Pages Navigation Menu

Does BABIP Steal Our Common Sense?

Editor’s Note: This in-depth, highly analytical guest blog post was composed by Fantasy Baseball Dugout contributor Michael Caron. FBD is regularly accepting articles and content contributions from fantasy baseballers from all walks of life. If you are a reader, an expert, a fellow blogger on another site, or a budding sportswriter – we highly encourage you to submit your stuff to us. Check out all the details on our page about how you can write for Fantasy Baseball Dugout. You can also email fantasybaseballdugout [at] gmail [dot] com if you have any questions.
Matt Kemp 2011 BABIP
Statistics can be misleading.  We all know this, and BABIP is no exception.  Used incorrectly, BABIP can lead us to some unfortunate conclusions.  Before sabermetrics rushed onto the scene with flashy statistics measuring and objectifying everything there is to know about baseball, people relied on common sense to come to some pretty basic conclusions. Such as the idea that fast hitters are going to beat out more groundballs for hits than slow hitters. No one is going to argue with that, right? Unfortunately, many people misuse BABIP (Batting average on balls in play) and forget about this basic principle. Tristan Cockroft of ESPN wrote a very helpful piece on understanding BABIP that I highly suggest reading before continuing with this article.

Now that you have a better understanding of BABIP, let’s continue. For today, we are going to focus on how to correctly use BABIP to remind us that a players speed will improve their batting average on ground balls in play and thus their BABIP.

Tristan touches on finding an expected BABIP by multiplying a players ground balls/line drive/fly balls/bunt hits by the league average BABIP for those categories. While I believe this is a good starting point, because as Tristan has shown, the type of hits that a player tends to hit will go a long way in determining his BABIP, I want to take this a step further. I’m going to show you, sabermetrically, that we need to take a players speed into greater consideration when determining an expected BABIP.

2011 BABIP Leaders

First, lets take a look at some of the top BABIP’s from 2011 to see how the data might be misinterpreted. Knowing that the league average BABIP tends to hover around .300.

Player 2011 BABIP
Matt Kemp .380
Adrian Gonzalez .380
Emilio Bonifacio .372
Michael Bourn .369
Michael Young .367
Alex Avila .366
Miguel Cabrera .365
Hunter Pence .361
Alex Gordon .358
Dexter Fowler .354
Jose Reyes .353
Ryan Braun .350
Joey Votto .349
Andre Ethier .348

Based on this data alone, it would be easy to conclude that all of the above players were very lucky in 2011 and due for significant regression to the league average of about a .300 BABIP in 2012. For more in-depth analysis on BABIP… 

Now, let’s use Tristan’s xBABIP formula to get a better idea of how lucky these players were.

Player 2011 BABIP xBABIP Difference
Matt Kemp .380 .307 .073
Adrian Gonzalez .380 .307 .073
Emilio Bonifacio .372 .354 .018
Michael Bourn .369 .356 .013
Michael Young .367 .335 .027
Alex Avila .366 .302 .064
Miguel Cabrera .365 .308 .057
Hunter Pence .361 .291 .070
Alex Gordon .358 .304 .054
Dexter Fowler .354 .312 .042
Jose Reyes .353 .307 .046
Ryan Braun .350 .301 .049
Joey Votto .349 .335 .014
Andre Ethier .348 .326 .022

Already we’re starting to see that we should expect speedy hitters that hit a lot of ground balls such as Emilio Bonifacio and Michael Bourn to have a higher xBABIP than normal. But others, such as the speedy Matt Kemp (who only hit ground balls 36% of the time in 2011) still appear to have been extremely lucky in 2011 based on their xBABIP.

The BABIP Formula Extended

So I dug deeper. Knowing that the league average for batting average on ground balls in play was .235 in 2011, I hypothesized that fast hitters would have a much higher average on ground balls in play. I took every player that has stolen 25 or more bases in a season since 2008, along with every player that had at least 500 plate appearances and had 0 or 1 stolen bases. From those two separate groups I found their batting average on ground balls in play (we‘ll call it BAGBIP). Here is what I found.

Year BAGBIP of Players with >25 SB BAGBIP of Players with 0-1 SB and >500 PA
2011 .292 (22 Players) .239 (21 Players)
2010 .298 (25 Players) .219 (29 Players)
2009 .290 (28 Players) .220 (26 Players)
2008 .290 (23 Players) .224 (28 Players)
AVG .293 .226

As you can see, players with at least 25 stolen bases have a much higher batting average on ground balls in play than the players that had 0-1 stolen bases. From here I tweaked Tristan’s xBABIP formula, (GB * .235) + (FB * .137) + (LD * .716) + (BUNT * .388), using the .293 AVG for ground balls on the players that had more than 25 SB in 2011 and the .226 AVG on the players that had 0-1 stolen bases in 2011 instead of the .235 AVG Tristan used, to better reflect the impact of speed on a players xBABIP.

Player 2011 BABIP xBABIP New xBABIP
Matt Kemp .380 .307 .328
Adrian Gonzalez .380 .307 .302
Emilio Bonifacio .372 .354 .384
Michael Bourn .369 .356 .385
Michael Young .367 .335 N/A
Alex Avila .366 .302 N/A
Miguel Cabrera .365 .308 N/A
Hunter Pence .361 .291 N/A
Alex Gordon .358 .304 N/A
Dexter Fowler .354 .312 N/A
Jose Reyes .353 .307 .331
Ryan Braun .350 .301 .324
Joey Votto .349 .335 N/A
Andre Ethier .348 .326 .322

Players with N/A did not have >25 SB or 0-1 SB in 2011.

Just within this group some numbers really jump out at you. At first glance Emilio Bonifacio and Michael Bourn appeared extremely lucky in 2011 based on their BABIP’s compared to the league average of about .300 and looked like prime candidates to regress in 2012. However, after taking their speed into consideration, they may have actually been slightly unlucky in 2011 with BABIP’s lower than their new xBABIP’s.

2012 BABIP Analysis For Fantasy Baseball

Other players, such as Matt Kemp and Jose Reyes, appear to be headed for some BABIP regression in 2012, but to a lesser extent than first expected. The formula reinforced the fact that Adrian Gonzalez and Andre Ethier are headed for some BABIP regression.

As I stated at the beginning of this article, stats can be misleading.  If you’re simply going to take a quick glance at BABIP and arrive at hasty conclusions regarding a players “luck” without considering why their BABIP may have been so high or so low, you mine as well ignore BABIP altogether and be better off.  Before there was BABIP, it was taken for granted that fast hitters beat out ground balls more than slow hitters.  BABIP can be a very useful stat in fantasy baseball if you don’t allow it to steal the things you already know.

Related Posts Plugin for WordPress, Blogger...

Comments

comments

Join Our Yahoo Fantasy Baseball Leagues and Win